Gaio DataOS
Gaio DataOS
Gaio DataOS
  • 👋 Welcome to Gaio DataOS
  • GETTING STARTED
    • Gaio DataOS Console
    • Quickstart
  • FUNDAMENTALS
    • Data Projects
    • Studio
    • Database
    • Workflow
  • Data Sources
  • TASKS
    • ETL
      • Builder
      • SQL
      • Source SQL
      • Insert Table
      • Insert Row
      • Update
      • Delete
      • Create Table
      • Quick Table
      • Quick Upload
      • Pivot Table
      • Unpivot Table
      • Run Process
      • REST
      • Parameters to Table
      • Table to Parameters
      • Define parameter value
      • Users
      • CSV Web
      • CSV Local
      • Google Spreadsheet
    • Analytics
      • Sample
      • Cluster
      • Principal Components
      • Association Rules
      • Forecast
      • Python
    • Delivery
      • Report
      • Content
      • Form Card
      • Export CSV
      • Map
    • Map Editor
Powered by GitBook
On this page
  • How to Use
  • 1. Open the Task
  • 2. Select a Database
  • 3. Write the SQL Code
  • 4. Settings (Settings Tab)
  • 5. Columns Tab
  • 6. Save and Run
  1. TASKS
  2. ETL

Source SQL

PreviousSQLNextInsert Table

Last updated 15 days ago

The Source SQL task allows you to run SQL queries directly on databases connected to Gaio DataOS. It is ideal for extracting, transforming, or importing data from external sources (such as relational databases) into your project for use in data flows, analysis, and dashboards.


How to Use

1. Open the Task

Navigate to: Tasks > ETL > Source SQL


2. Select a Database

In the left-side panel:

  • Select a database previously registered in the environment and released for your user ID.

  • Once selected, all available tables from that source will be displayed.


3. Write the SQL Code

In the Code tab:

  • Type or paste your SQL query.

  • You can use advanced SQL syntax, including JOIN, WHERE, GROUP BY, CTEs, and more.

Use Run query to test the results before saving the task.


4. Settings (Settings Tab)

  • Save on default repository: Saves the query result as a table in the project’s local repository.

  • Incremental mode: Only imports new records when applicable.

  • Field as string: Converts all fields to text.

  • Create an empty table when no data: Creates the table structure even if the query returns no data.

  • Raw imports: Imports data without automatic formatting.

  • Auto columns (JDBC only): Automatically detects column structure (JDBC connections only).

  • JSForce Bulk Mode (Salesforce only): Optimizes performance for bulk imports from Salesforce.

These options are especially useful for managing schema and performance in external database integrations.


5. Columns Tab

  • This tab becomes available only if Save on default repository is enabled.

  • Manually define column names and types for the resulting table if you don’t want them to be automatically detected.


6. Save and Run

  • Click Save to add the task to your flow.

  • You can then link this step to additional tasks (such as transformation, visualization, or export).


Use Cases

  • Querying live data from an external source (e.g., MySQL, PostgreSQL, Oracle, SQL Server)

  • Importing legacy system or ERP data via SQL

  • Transforming data before ingestion directly through SQL

  • Automating integrations with enterprise databases using custom queries